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Abstract 36 

Large tropical trees store significant amounts of carbon in woody components and their 37 

distribution plays an important role in forest carbon stocks and dynamics. Here, we explore the 38 

properties of a new Lidar derived index, large tree canopy area (LCA) defined as the area 39 

occupied by canopy above a reference height.  We hypothesize that this simple measure of forest 40 

structure representing the crown area of large canopy trees could consistently explain the 41 

landscape variations of forest volume and aboveground biomass (AGB) across a range of climate 42 

and edaphic conditions. To test this hypothesis, we assembled a unique dataset of high-resolution 43 

airborne Light Detection and Ranging (Lidar) and ground inventory data in nine undisturbed old 44 

growth Neotropical forests.  We found that the LCA for trees greater than 27 m (~25–30 m) in 45 

height and at least 100 m2 crown size in a unit area (1 ha), explains more than 75 % of total 46 

forest volume variations, irrespective of the forest biogeographic conditions. When weighted by 47 

average wood density of the stand, LCA can be used as an unbiased estimator of AGB across all 48 

sites (R2 = 0.78, RMSE = 46.02 Mg ha-1, bias = 0.76  Mg ha-1). Unlike other Lidar derived 49 

metrics with complex nonlinear relations to biomass, the relationship between LCA and AGB is 50 

linear.  A comparison with tree inventories across the study sites indicates that LCA correlates 51 

best with the crown area (or basal area) of trees with diameter >50 cm.  The spatial invariance of 52 

the LCA–AGB relationship across the Neotropics suggests a remarkable regularity of forest 53 

structure across the landscape and a new technique for systematic monitoring of large trees for 54 

their contribution to AGB and changes associated with selective logging, tree mortality, and 55 

other types of forest disturbance and dynamics.  56 
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1 Introduction 59 

In humid tropical forests, tree canopies contribute disproportionately to the exchange of water 60 

and carbon with the atmosphere through photosynthesis (Goldstein et al., 1998; Santiago et al., 61 

2004). From a physical standpoint, canopies are rough interfaces formed by crowns of emergent 62 

and large trees, regularly disturbed by wind thrusts and gap dynamics. This structurally complex 63 

boundary layer is challenging for scaling of biogeochemical fluxes and modeling of vegetation 64 

dynamics (Baldocchi et al., 2003). Large canopy trees are among the first to be impacted by 65 

storms or heavy precipitation (Espírito-Santo et al., 2010), drought stress (Nepstad et al., 2007; 66 

Saatchi et al., 2013; Phillips et al., 2009), and fragmentation (Laurance et al., 2000), potentially 67 

leading to tree death and formation of large canopy gaps (Denslow, 1980; Espírito-Santo et al., 68 

2014). Several studies suggest that forest canopies can show fractal properties that tend to evolve 69 

from a non-equilibrium state towards a self-organized critical state, involving gap formation and 70 

recovery (Pascual and Guichard, 2005; Solé and Manrubia, 1995), with crowns preferentially 71 

growing towards more sunlit parts of the canopy (Strigul et al., 2008).  72 

Over the past decade, stand level canopy metrics have been increasingly derived using small 73 

footprint airborne Lidar systems (ALS), a widely used remote sensing technique to study the 74 

structure of forests (Kellner and Asner, 2009; Lefsky et al., 2002). Lidar derived mean canopy 75 

height (MCH) is a good predictor of tropical forest aboveground carbon content and its spatial 76 

variability (Jubanski et al., 2013), but it does not provide information on the presence of large 77 

trees that are important when monitoring changes of forest biomass from logging and small scale 78 

disturbance (Bastin et al., 2015). Moreover, different forests with the same MCH may differ in 79 

their stem density, notably of large trees, and in stand mean wood density, two aspects that are 80 

important in constructing a robust model to infer AGB from lidar data (Asner et al., 2012; 81 
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Mascaro et al., 2011). Ground observations suggest that stem density, basal area, height and 82 

crown size of large tropical trees may all be good indicators of forest AGB (Clark and Clark, 83 

1996; Goodman et al., 2014). This implies that including information on crown area of 84 

individual large trees should improve carbon stock assessments, as confirmed in temperate and 85 

boreal regions (eg. Packalen et al., 2015; Popescu et al., 2003; Vauhkonen et al., 2011, 2014).  In 86 

tropical forests, identifying and delineating crowns of large trees is a difficult and time 87 

consuming process due to the layered structure of the forest canopy and overlapping crowns 88 

(Zhou et al., 2010, but see Ferraz et al., 2016). 89 

Here, we explore how the fractional area occupied by crowns of large trees in a forest stand can 90 

be used as a reliable indicator of forest biomass across a wide range of forest structure, climate 91 

and edaphic geographic variations.  We define large tree canopy area (LCA) as a metric 92 

capturing the cluster of crowns of large trees within a forest patch using height and crown area 93 

measured by high resolution airborne Lidar measurements. Precisely, LCA is the number of 94 

pixels in the canopy height model above a reference height, and excluding the pixel clusters 95 

smaller than a reference area. Since this metric quantifies the proportional presence of large 96 

trees, it can be used to estimate AGB and monitor changes associated with the disturbance of 97 

large trees from mortality events and selective logging.   We first explore the properties of LCA 98 

across a range of landscapes in the Neotropics. Next, we hypothesize that LCA is a good 99 

predictive metric of the spatial variations of AGB over a wide range of old growth forests.  100 

To this end, we assembled a collection of airborne Lidar measurements and ground inventory 101 

data at nine sites in old growth Neotropical forests. The Lidar data provide variations in canopy 102 

height and distribution of large trees that allow us to address the following questions: 1) is there 103 
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a unique definition of LCA at the landscape scale across different sites? 2) does LCA metric 104 

capture variations of AGB? 105 

 106 

2 Materials and Methods 107 

2.1 Study sites 108 

We studied the canopy structure at nine old growth lowland Neotropical forest sites that span a 109 

broad range of climatic and edaphic conditions (Fig. S1, Table 1). All sites are located in low 110 

elevation areas (less than 500 m above sea level) but have small scale surface topography that 111 

may influence the distribution of crown formations and gaps. These forests are for the most part 112 

undisturbed terra firme forests. Tapajós, Antimary and Cotriguaçu get the least rainfall, with 113 

approximately 2000mm yr-1, while La Selva and Chocó both receive more than 4000 mm yr-1 114 

(Table 1).  115 

Permanent forest inventory plots were available for all sites except Cotriguaçu (Table 1). Sites 116 

where tree level inventory data were available were used to estimate the stand level aboveground 117 

biomass, thereafter referred to as AGBinv: BCI (50 plots of 1 ha each), Chocó (42 plots of 0.25 ha 118 

each), La Selva (11 plots of 1 ha each), Manaus (10 plots of 0.25 ha each), Nouragues (7 plots of 119 

1 ha each) and Tapajós (10 plots of 0.25 ha each). In these plots, all trees with a diameter at 120 

breast height (DBH) ≥10 cm have been mapped, measured and identified to the species. Trees 121 

with irregularities or buttresses were measured higher on the bole. Total tree height 122 

measurements were available for a subset of these trees. The method for calculating AGBinv from 123 

forest inventories at 1 ha scale is reported in S.1 of the supplementary information. Stand 124 

averaged wood density of each site was calculated and is reported in Table 1. Additional plot 125 
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level data (AGBinv and mean wood density) were provided for Antimary (50 plots of 0.25 ha 126 

each), Nouragues (27 plots of 1 ha each) and Paracou (85 plots of 1 ha each). 127 

The four sites where 1 ha plots were available were used to compare the LCA metric and AGB, 128 

and are here referred to as “calibration sites” (BCI, La Selva, Nouragues and Paracou).  Smaller 129 

plots have a higher probability of having the crown of large trees extend outside the plot 130 

boundary, which can introduce uncertainty in estimates of LCA because of edge effect (Meyer et 131 

al., 2013; Packalen et al., 2015). For this reason, all plots smaller than 1 ha were excluded from 132 

this analysis. 133 

 134 

2.2  Lidar data 135 

Lidar sensors scan the vegetation vertical structure and return a three dimensional point cloud 136 

derived from the time it took each pulse to return to the instrument. The Lidar datasets acquired 137 

over the study sites come from discrete return Lidar instruments and were gridded horizontally at 138 

a 1m resolution using the echoes classified as either vegetation or ground. They yield three 139 

products: digital surface model (DSM) corresponding to the top canopy elevation, digital terrain 140 

model (DTM) corresponding to the ground elevation, and canopy height model (CHM), which is 141 

the height difference between the DSM and the DTM. DTMs were interpolated from a Delaunay 142 

triangulation or comparable interpolation methods, after outliers have been removed. DSMs were 143 

created using the highest return within a cell. Lidar data over Paracou were acquired in last 144 

return mode, causing a bias of 50 cm on the CHM (Vincent et al., 2012). This bias is not 145 

addressed in this study because our height increment for the determination of optimal height 146 

thresholding is larger (1m) (see Sect. 4.3). Data were acquired between 2009 and 2013, using 147 
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relatively similar sensors and acquisition configurations (Table 2). The potential differences 148 

between the Lidar datasets and their impact on the results are addressed in the Discussion.  149 

For each site, we selected a 1x1 km (100 ha) area of old growth forest, oriented north-south, 150 

without any human disturbance to the extent possible. Topography derived from Lidar data 151 

within the selected 1 km2 subset images provides information on landscape variations that may 152 

impact the forest structure. Data visualization was done using ENVI version 4.8 (Exelis).  153 

Mean canopy height (MCH) is a good predictor of AGB provided that the regression model is 154 

calibrated locally. It was calculated by averaging all the canopy height model pixels falling in an 155 

area of interest. Here, we calculated an AGB map of each site from MCH using the following 156 

model form (Eq. (1), Asner and Mascaro, 2014). 157 

𝐴𝐺𝐵$%&'( = 𝑎𝑀𝐶𝐻. + 𝜖        (1) 158 

where AGBLidar is the aboveground biomass estimation derived from Lidar data, a is a scaling 159 

constant, which is expected to depend significantly on forest type and stand level wood density, 160 

b is a power law exponent and 𝜖~𝑁(0, 𝜎7) represents the uncertainty in measurements.  All 161 

coefficients are presented in Table S1. We inferred the model parameters directly for the sites 162 

where AGBinv of 1 ha plots was available  (La Selva, BCI, Paracou and Nouragues).  For Chocó 163 

and Antimary, we developed models based on 0.25 ha plots and 50 m x 50 m pixels of Lidar data 164 

and after estimating AGBLidar, aggregated the image to 1 ha or 100 m pixels.  For the remaining 165 

sites of the Central Amazon (Cotriguaçu, Manaus and Tapajós), we used a model based on 166 

existing data derived from airborne and spaceborne Lidar (Lefsky et al., 2007).  This model may 167 

have larger uncertainty in estimating biomass compared to our site specific model, but we here 168 

assume that all 1 ha scale AGBLidar estimates have approximately similar uncertainties.  169 

 170 
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2.3 Computing Large Canopy Area (LCA) 171 

At each study site, we extracted the area of canopy that relates to total area of the canopy height 172 

model above a standard height (h) threshold, or LCA(h), and explored how this metric scales 173 

along two axes. First, we varied the threshold height h with increments of 1m, between 5m and 174 

50m, in 100 m by 100 m subareas (100 subareas for each site).  Second, to denoise the data, we 175 

excluded the clusters with less than a set number of 1m2 pixels (50, 100, 150 or 200). We then 176 

prioritized the crown area of large trees, and filtered out pixels that could be related to outliers or 177 

to single branches. This method thus quantifies the area of large crowns covering a plot or larger 178 

landscape unit area, as a percentage of covered area.  179 

LCA maps were produced at 1 ha resolution. Pixel clustering was based on the similarity of the 180 

four nearest neighbors (similar results were obtained with an eight neighbor model, results not 181 

shown here). Figure S2 summarizes the steps taken to go from the Lidar canopy height model to 182 

the final LCA map.  Processing was conducted using the IDL software (Interface Description 183 

Language, Exelis). 184 

We determined the optimal minimum crown size and canopy height threshold calculating the 185 

coefficient of correlation between AGBLidar and LCA. We also performed the same analysis 186 

using AGBinv and LCA at the four calibration sites. This step allowed us to examine if optimal 187 

height thresholds differed from one site to the other. The goal was to find a single optimal height 188 

threshold and crown size that could be applied for LCA retrieval across closed canopy 189 

Neotropical forests. 190 

 191 

2.4  Relating LCA to biomass 192 
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We tested different models to infer AGBinv from LCA, henceforth called AGBLCA, at the four 193 

calibration sites, and explored if adding more parameters, such as mean wood density of a site, 194 

mean wood density of large trees (DBH ≥50 cm), mean canopy height or top percentiles of 195 

canopy height improved the predicting power of the model. The two models we retained are of 196 

the form of Eq. (2) and Eq. (3): 197 

𝐴𝐺𝐵$9: = 𝑎	𝐿𝐶𝐴 + 𝑏         (2) 198 

𝐴𝐺𝐵$9: = 𝑎	𝐿𝐶𝐴 + 𝑏 	×	𝑊𝐷        (3) 199 

where WD is the mean wood density of a site or the mean wood density of trees >50 cm in DBH 200 

of a site.   201 

 We evaluated our results by applying a jackknife validation to our regression model, based on 202 

1000 iterations of bootstrapping.  We also compared AGB as derived from LCA (AGBLCA) to the 203 

Lidar derived aboveground biomass (AGBLidar) in the nine 1km2 images. Coefficients of 204 

correlation (R2), root mean square error (RMSE) and bias are reported. We finally compared 205 

these results to a traditional model relying on MCH to estimate AGB. The analysis was 206 

performed using the R statistical software (R Core Team, 2014). 207 

 208 

2.5  Detecting Changes of Selectively Logging 209 

Forest degradation due to selective logging is difficult to detect with conventional remote 210 

sensing techniques due to small scale and minor impacts on the forest canopy and biomass 211 

compared to severe forest disturbances (e.g. fires, storms, or clearing). However, selective 212 

logging targets large trees (Pearson et al., 2014) and thus may be detectable using LCA. Here, we 213 

use the Antimary study site that was selectively logged after the 2010 Lidar acquisition to 214 

examine the use of LCA for detecting logging impacts on the forest canopy and AGB.  We apply 215 
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the large tree segmentation approach on both the 2010 and on a 2011 post-logging Lidar data 216 

(see Andersen et al., 2014 for details) to quantify the logging impacts in terms of the distribution 217 

of large trees removed from the forest and the loss of aboveground biomass.   218 

 219 

3 Results 220 

3.1  Intersite comparison of landscapes and MCH 221 

 Topographic variation ranged from about 4 m elevation gain in flat area of Tapajós to steep 222 

elevation gain of up to about 100 m in Cotriguaçu and Chocó (Fig. S3). Top canopy height 223 

reached up to 60m, but varies across sites, with Chocó having the lowest MCH (24.1 m) and 224 

Nouragues the highest (29.7 m). Forest height in Manaus was more homogeneous than in the 225 

other sites, with a standard deviation of 6.8 m for MCH, versus 10.3 m in Paracou. We found no 226 

relationship between topography and canopy height, which suggests that variability in forest 227 

structure may be due to other ecological and edaphic factors in each site. 228 

 229 
 230 
3.2 Large canopy area index 231 

The choice of the canopy height threshold impacted LCA more than the minimum number of 232 

pixels per cluster (Table S2). The difference due to the choice of the minimal cluster size 233 

threshold was on average 1.4 %, calculated as the mean of the difference between the smallest 234 

grain (50 pixels) and the largest one (200 pixels) across sites and height thresholds. Based on this 235 

analysis, we chose to define LCA using a minimum cluster size of 100 pixels (100 m2 for crown 236 

area) in the remainder of this study. This corresponds to an area of at least 10 m x10 m or a circle 237 

of approximately 11m in diameter, consistent with the average crown diameter of large trees of 238 

the region (Bohlman and O'Brien, 2006; Figueiredo et al., 2016; Clark, unpublished results).  239 
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 240 
In contrast, the canopy height thresholds markedly impacted the magnitude of LCA among sites 241 

(Fig. 1 and Fig. 2, Table S2). As the height threshold increased, intra-site variation of LCA(h) 242 

became apparent, showing differences of LCA associated with differences of forest structure 243 

(Fig. 1). Tapajós and Nouragues stood out with more area of large trees at the height threshold of 244 

30 m (LCA30m = 51 and 48 %, respectively) , while Antimary and Chocó showed much lower 245 

LCA at this height threshold (LCA30m = 21 %) (Table S2). The steepest slopes of the LCA(h) 246 

function corresponded to the highest sensitivity of LCA to height thresholds and the inflection in 247 

LCA was found between 24m in Antimary and 30m in Nouragues (Fig. 2).  The average height 248 

of the steepest slope was about 27 m, a value that was used as the optimal threshold across all 249 

sites.  250 

Regressing AGBLidar and LCA showed that the highest coefficients of correlation between the 251 

two metrics occurred between 23 m (Chocó) and 30 m (Tapajós) height thresholds (Fig. 3a), 252 

explaining more than 75 % of AGB variation in each site. The same analysis repeated using 253 

AGBinv and LCA at the calibration sites (Fig. 3b) also confirmed the earlier results showing the 254 

best relationships corresponded to height thresholds are found to be between 27m (Nouragues 255 

and Paracou) and 28m (BCI and La Selva), with maximum coefficients of correlation ranging 256 

between 0.5 and 0.8.  Based on these results, we defined LCA as the cumulative area of  clusters 257 

of the canopy height model greater than 27 m height and each more than 100 m2. 258 

 259 

3.3 Variation of AGB derived from LCA 260 

AGBinv was found to depend linearly on LCA (Eq. 2), with a better coefficient of correlation and 261 

RMSE than other models, such as a power law fit (R2
linear = 0.59, RMSElinear = 62.53  Mg ha-1, vs. 262 

R2
power = 0.54, RMSEpower = 65.38). Although this model was unbiased (bias = 0.0 Mg, biascross_val 263 
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= 0.16 Mg), there were clear differences among study sites (Fig. 4, Table 3). These differences 264 

were largely explained by landscape scale differences in wood density, an important factor 265 

representing the influence of species composition on the spatial variation of AGB. To explore the 266 

contribution of wood density across the study sites, we computed the average wood volume as 267 

the ratio of AGB divided by the average wood density (Fig. 4b).   The linear relationship 268 

between LCA and wood volume yielded an estimate of the average total volume of forests 269 

independently of the site characteristics, through Vol = a LCA + b (Table 3).  270 

For AGB estimation, the model based on LCA weighted by WD gives the best result by bringing 271 

R2 up to 0.78 and RMSE down to 46.02  Mg ha-1 (Fig. 4b, Fig. 5, Table 3, Eq. (3)), with AGBinv 272 

and AGBLCA falling around a one-to-one line in Fig. 5a. At all sites, RMSE values are between 273 

20.87 and 42.22 Mg, except Nouragues, where RMSE remains large (71.21 Mg) due to high 274 

biomass and several outliers from the linear relation. 275 

Finally, we applied the model from Eq. (3) to all 1km2 areas and compared the derived AGBLCA 276 

to AGBLidar (see Sect. 2.2), for which local models based on MCH were used (Fig. 5b). Global 277 

RMSE was found to be 34.72 Mg and RMSE per site varied between 20.79 Mg at BCI and 49.58 278 

Mg at Manaus. Our ground calibrated LCA model defined by Eq. (3) had a similar performance 279 

as the MCH based AGB model (R2
MCH = 0.79, RMSEMCH = 44.2 Mg, Table S3). These findings 280 

show that relying on a fraction of the Lidar information gives comparable results as using 281 

metrics depending on information from all pixels, such as MCH, highlighting the importance of 282 

large canopy trees to estimate biomass. The relationship between LCA and other metrics derived 283 

from ground data, such as Lorey’s height or basal area, are presented in Table S4. 284 

 285 

3.4 AGB changes from logging 286 
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The impacts of logging on the distribution of large trees and changes of AGB was detected by 287 

simply deriving the LCA index from pre and post-logging Lidar data acquired in 2010 and 2011 288 

respectively in Antimary (Fig. 6).  Difference in LCA between the two dates (2010–2011) (Fig. 289 

6a) at 1 ha grid cell captured the areas of largest changes in the few months following logging 290 

(logging took place between June and November 2011, Lidar data were collected in late 291 

November 2011). The LCA approach was able to detect approximately a 17 % decrease in LCA, 292 

from a mean LCA of 34.8 % in 2010 to 29.2 % in 2011.   293 

The changes were also captured in the frequency distribution of large canopy trees before and 294 

after logging (Fig. 6b) and the differences in the spatial distribution (Fig. 6c and 6d).    295 

These changes in LCA correspond to a biomass loss of 15.2  Mg ha-1 when integrated in equation 296 

(2) and were of the same magnitude of the planned selectively logging removal rate (12–18  Mg 297 

ha-1 or 10–15 m3 ha-1 of timber volume) (Andersen et al., 2014).  Difference in the Lidar index 298 

(Δ𝐿𝐶𝐴) at the native resolution of 1 m (Fig. 6e) was able to capture both the location of all large 299 

trees removed from the forest stand and partial regeneration and gap filling that occurred in the 300 

forest between the two dates.  301 

 302 

4 Discussion 303 

4.1 Inter-site Comparisons 304 

Cross-site studies on the structure of tropical forests have led to significant advances in our 305 

understanding of tropical forest ecology (Gentry 1993; Phillips et al., 1998; ter Steege et al., 306 

2006). They have also yielded important insights on new techniques to predict carbon stocks 307 

across regions (eg. Asner and Mascaro, 2014).   Comparison of sites in terms of MCH derived 308 

for the study sites confirms that there is a strong regional variations of AGB with respect to 309 
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canopy height, and that East Amazonian sites tend to have much taller trees than Central and 310 

Western Amazonia sites. This was already apparent in the canopy height maps produced by the 311 

GLAS sensor (Lefsky, 2010; Saatchi et al., 2011; Simard et al., 2011). Comparing sites in terms 312 

of LCA showed a similar pattern of larger trees, being relatively more present in eastern 313 

Amazonia, notably in the French Guiana sites and Tapajos.   Our most southwestern site was 314 

Antimary, in the state of Acre (Brazilian Amazon) and does not represent areas in the Peruvian 315 

Amazon and western Amazon-Andes gradients. The site in Chocó is also unique in its 316 

characteristics because of extremely wet condition and unknown disturbance history (e.g., 317 

selective logging). Additional lidar and ground measurements would be needed in western 318 

Amazonia to further validate the patterns observed in this study.  319 

 320 

4.2 Physical Interpretation of LCA 321 

In this study, we introduced a simple structural metric that captures the proportion of area 322 

covered by large trees over the landscape ( > 1 ha) and explained the variation in average forest 323 

volume and biomass when weighted by wood density in nine sites of old growth Neotropical 324 

forests. LCA cannot separate the crown areas of individual trees.  However, it is adapted for 325 

large scale monitoring of forest volume and biomass change, as it is a robust and readily 326 

accessible metric. For individual tree separation, complex and more computationally intensive 327 

approaches are available (Ferraz et al., 2016).  328 

In estimating LCA from Lidar data, we examined the spatial clustering properties of LCA and 329 

found that the minimum cluster size was less important than the threshold of canopy height, as 330 

long as the analysis focused on the relative covered area instead of on the density of large trees.  331 

We found that using the percentage of the area covered by large canopy trees is an efficient way 332 
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of overcoming the problem of individual crown segmentation in Lidar data. LCA is related to 333 

how trees reaching the forest canopy (above a certain height) fill the space and how this 334 

characteristic may follow a spatially invariant scaling across tropical forests (West et al., 2009).   335 

 336 

4.3  Correlation between LCA and AGB 337 

The distribution of R2  between LCA and AGB for (Fig. 3) is such that the maximum difference 338 

in R2 between a threshold of 25m and 30m is approximately 0.1, a negligible value. Hence, AGB 339 

retrieval by LCA is relatively insensitive to the height threshold.  For most sites, except 340 

Antimary, we found a height threshold such that LCA explains about 80–90 % of the variation of 341 

AGB or total volume of the forests for each site (60–70 % when compared with ground plots).  342 

Using a height threshold of 27 m for all sites reduced the R2 by 0.04 on average (max = 0.08) 343 

compared to the optimal height threshold for each site. Hence, the difference between the R2 of 344 

Lidar and ground plots is due to the relative correlation between MCH used in Lidar derived 345 

biomass and LCA. Differences in Lidar characteristics for each site and differences in timing of 346 

Lidar observations and ground plots further amplify this problem. Finally, a limit to how much 347 

LCA can explain variation in AGB relates to forest structure and the AGB of small trees.   348 

Potential differences in MCH among sites are due to footprint size, scan angle and return density 349 

(Disney et al., 2010; Hirata, 2004; Hopkinson, 2007). However, these effects are generally 350 

smaller than the 1m increment that we used to determine the optimal height thresholds of LCA. 351 

As a result, LCA estimation, and therefore AGB inferred from LCA, should depend little on 352 

instrument, acquisition and processing (Table 2).  This is an important finding given the 353 

increasing variety of airborne Lidar sensors, and also given the pre and post-processing methods 354 

available for monitoring tropical forest structure and aboveground biomass.  However, 355 
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determining whether the 27m threshold holds for LCA calculation across in the tropics would 356 

require a validation at more study studies across continents.  357 

 358 

4.4  LCA Relation to Ground Measurements 359 

The relation between LCA derived from Lidar and the ground measurements can be investigated 360 

by converting the 27 m height threshold into equivalent DBH values, using a height–diameter 361 

relationship.  In the absence of a local DBH–height relation at each site, we made use of the 362 

following equation (Chave et al., 2014): 363 

ln(H) = 0.893− E + 0.760 × ln(D)− 0.0340 × (ln(D))2
   (4) 364 

where E is a measure of environmental stress for each site that potentially impacts the tree 365 

allometry. The corresponding DBH values fall around 35–55 cm, except for Chocó, where the 366 

best coefficient of correlation is reached with a DBH threshold of 29 cm (Fig. S4). The DBH 367 

estimation suggests that using a minimal DBH threshold of about 50 cm for large trees for old 368 

growth neo-tropical forests better represents the total AGB variations.   369 

The lower range of biomass estimation for the LCA model, associated with the intercept for LCA 370 

equal to zero, ranged between 122  Mg ha-1 in La Selva and 192  Mg ha-1 in Paracou (Fig. 7a).   371 

This lower range identified with the intercept of the LCA–AGB linear model can be interpreted 372 

as the AGB associated with all trees smaller than 27 m and representing the smaller trees 373 

(approximately all trees with DBH <50 cm). Note that the differences between sites are only due 374 

to differences in their mean wood density and not the volume of trees (see Eq.(3) and Fig. 4). 375 

Similarly, the contribution of small trees to the total biomass in the ground inventory ranges 376 

between around 100 and 200  Mg ha-1, except in Paracou (261  Mg ha-1) (Fig. 7b).  AGB 377 

estimation based on LCA in these sites cannot go under 100  Mg ha-1 or over 500  Mg ha-1. This 378 
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is not a limitation of the model because LCA is designed to provide AGB estimates for forests 379 

reaching at least 27 m in mean canopy height, and such forests generally exceed 100  Mg ha-1 in 380 

AGB. Also, the upper threshold of 500  Mg ha-1 is consistent with upper values found globally at 381 

1 ha scale (Brienen et al., 2015; Slik et al., 2013). A recalibration of the method should be 382 

envisaged in secondary and highly degraded forests. 383 

 384 

4.5  LCA as AGB Estimator 385 

The correlation of LCA to AGBinv suggests that a Lidar based approach can lead to the 386 

estimation of AGB at the landscape scale and give useful information on the presence of large 387 

canopy trees and their distribution, extending the analysis of large trees in plot level inventory 388 

based studies (Bastin et al., 2015; Slik et al., 2013).   389 

Therefore,  LCA can explain the variations of total forest volume without any ancillary data 390 

about the forest or the landscape.  Any bias in conversion of LCA to AGB, however, can be 391 

corrected across landscapes and sites by scaling the LCA–AGB relationship with average wood 392 

density at the landscape scale.  393 

Wood density has been shown to be a key element of allometric models of AGB estimation 394 

(Baker et al., 2004; Brown et al., 1989; Chave et al., 2004; Nogueira et al., 2007). If wood 395 

density is assumed to be constant across DBH classes, the mean wood density at the plot scale 396 

can readily be used to scale LCA to biomass. However, if the wood density of large trees is 397 

smaller or larger than the average wood density, (e.g. in BCI and Chocó: S.3, Fig. S5), the use of 398 

mean wood density to scale LCA may introduce a slight bias in biomass estimation. A difference 399 

in mean wood density of 0.1 g cm-3 would introduce a bias of ±10 % in the biomass estimation 400 

when using our model. We found that using mean wood density of large trees or basal area 401 
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weighted wood density instead can give slightly better results and could circumvent the 402 

differences in size distribution of the wood density (S.3).  Instead we could rely on the wood 403 

density of large trees only. This would make the collection of ground data easier and cost 404 

effective for biomass estimation, because trees ≥50 cm DBH only represent 5–10 % of the stems 405 

of a plot (S.3, Fig. S6). Focusing on the wood density of dominant or hyper dominant species 406 

could also be an alternative approach for future use of Lidar derived LCA for large scale biomass 407 

estimation (Fauset et al., 2015; ter Steege et al., 2013).  408 

 409 

Both MCH and LCA–AGB models performed relatively poorly in high biomass plots of the 410 

Nouragues study area, by underestimating biomass values >500  Mg ha-1 (Fig. 4 and 5).  To 411 

explain the underestimation, we performed three tests: 1. We examined the differences in the 412 

ground estimated biomass values with and without tree height and found no significant impact in 413 

reducing the effect of underestimation. 2.  We tested the hypothesis that the height threshold 414 

used for LCA estimation across sites was not suitable for the Nouragues study site and dismissed 415 

the hypothesis because 27 m was found to be the optimum threshold for Nouragues plots. 3. We 416 

examined the errors in the Lidar estimation of forest height and found that except for an 417 

extremely high AGBinv of 617  Mg ha-1, the four other high biomass outliers are all located in the 418 

6 ha Pararé plot located on a very steep topography. The Lidar digital terrain model (DTM) of 419 

this area shows an average within plots elevation range of 90 m. Ground detection on steep 420 

terrain can be erroneous, depending on the Lidar point density and the view angle, causing large 421 

area interpolation errors for DTM development and significant error in canopy height 422 

measurements (Leitold et al., 2015). Other factors that may affect the underestimation of AGB 423 
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by LCA or MCH in the Nouragues site may be due to the presence of forest patches with clusters 424 

of large trees and overlapping crown areas. 425 

 426 

4.6 LCA and forest degradation 427 

Although LCA and MCH may perform similarly in capturing the forest biomass variations and 428 

changes, the use of LCA in detecting forest degradation and logging is more straightforward 429 

because of its relation to large trees.   The LCA approach was able to accurately detect changes 430 

in forests after logging by locating where the large trees are extracted.  Our estimate of biomass 431 

change from  the LCA approach was higher than the biomass loss of 9.1  Mg ha-1 reported by 432 

another study using the 25th percentile height above ground as the Lidar metric for biomass 433 

estimation (Andersen et al. 2014).  It can be expected that relying on the 25th percentile height 434 

metric for biomass estimation would place more emphasis on the lower part of the canopy 435 

(understory) that is either less damaged or has gone through some level of regeneration after 436 

logging. Models based on LCA or MCH, on the other hand, may be more realistic for estimating 437 

AGB changes because they capture the changes in large trees and upper forest canopy structure 438 

that contain most of the biomass and are directly impacted by logging and biomass removal.    439 

 440 

4.7 Future Applications of LCA  441 

LCA definition in our study relies on the high resolution information on forest height, allowing 442 

for the detection of crown area of large canopy trees.  Can a similar measure be derived from 443 

large footprint Lidar observations such as the future NASA spaceborne Lidar mission GEDI 444 

(Global Ecosystem Dynamic Investigation)?   GEDI will not provide spatially continuous data 445 
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on forest height, but its footprint size (~ 25 m) and dense sampling may be adequate to develop 446 

statistical indicators of large trees over the landscape.  447 

Similarly, future spaceborne radar missions could also provide useful information to retrieve 448 

large canopy areas. The synthetic aperture radar (SAR) tomographical observations of the 449 

European Space Agency (ESA) BIOMASS mission will provide wall-to-wall imagery of canopy 450 

profile that could be converted to LCA over the landscape (Le Toan et al., 2011).   Preliminary 451 

research based on airborne TomoSAR measurements has already shown that backscatter power 452 

at about 30 m above the ground, with sensitivity to the distribution of large trees, explained the 453 

variation of AGB over Nouragues and Paracou plots better than the backscatter power related to 454 

the lower part of the canopy (0–15 m) (Minh et al., 2016; Rocca et al., 2014). Future research on 455 

exploring the use of an equivalent radar index product from BIOMASS height or tomography 456 

measurements at a height threshold (e.g. 27 m) may provide a potential algorithm to map the area 457 

of large trees and estimate forest volume and biomass changes across the landscape.  458 

 459 

5  Conclusions 460 

We introduce LCA as a new Lidar derived index to capture the variations of large trees and total 461 

volume and biomass across landscapes that remain spatially and regionally invariant.  The 462 

importance of LCA is in its relevance to the structure and ecological characteristics of large trees 463 

in filling the canopy space and their unique contribution in determining the total volume and 464 

biomass of forests.  Unlike other Lidar derived metrics, LCA is linearly related to total 465 

aboveground biomass after being weighted by average wood density and this linear relationship 466 

remains unique across different forest types.  The comparison of LCA index with ground plots 467 

suggests that DBH >50 cm is a more reliable threshold to quantify the number and distribution of 468 
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large trees and in capturing the variations of the total aboveground biomass across landscapes 469 

and regions.    470 
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 764 
 765 
 766 
Table 1. Information on forest inventory plots. * indicates that a site has been used for the calibration of the LCA 767 
model. Sources: Antimary and Cotriguaçu: Fearnside, 1997; d’Oliveira et al., 2012, BCI: Center for Tropical Forest 768 
Science (CTFS) (Condit, 1998; Hubbell et al., 1999, 2005), Chocó: (bioredd.org), La Selva: Carbono project (Clark 769 
and Clark, 2000), Manaus and Tapajós: Espírito-Santo (unpublished results), Nouragues: Réjou-Méchain et al., 770 
2015, Paracou: Gourlet-Fleury et al., 2004; Vincent et al., 2012. 771 

Site Data Plots Size 
(ha) 

N plots Year Mean WD 
(g cm-3) 

Mean AGB 
(Mg ha-1) 

Annual rainfall 
(mm yr-1) 

 
Antimary 
(Brazil) 

 

Plot level 0.25 50 2010 0.61 234 2000 

BCI * 
(Panama) 

 

Tree level 1 50 2010 0.56 235 2600 

Chocó 
(Colombia) 

 

Tree level 0.25 42 2013 0.60 224 10000 

Cotriguaçu 
(Brazil) 

 

Not 
available 

- - - 0.60 - 2000 

La Selva * 
(Costa Rica) 

 

Tree level 1 11 2009 0.45 178 4000 

Manaus 
(Brazil) 

 

Tree level 0.25 10 2014 0.66 263 2200 

Nouragues * 
(French 
Guiana) 

 

Plot level 
Tree level 

1 
1 

33 
7/33 

2012 0.66 424 3000 

Paracou * 
(French 
Guiana) 

 

Plot level 1 85 2009-10 0.71 353 3000 

Tapajós 
(Brazil) 

Tree level 0.25 10 2014 0.62 238 1900 
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Table 2. Information on Lidar data and locations of the 9 research sites.  774 
Site 

(1km2  images) 

Sensor Year Retur

ns m-2 

Flight 

Altitude (m) 

Scanning 

angle (º) 

Frequency 

(kHz) 

NW corner lat NW corner lon 

Antimary Optech ALTM3100EA 2010-2011 10-15 500 11 70 9°17'47.26"S 68°17'15.06"W 

BCI Optech ALTM3100EA 2009 8 1000 35 70 9°9'28.56"N 79°51'18.9"W 

Chocó Optech ALTM3033 2013 4 1000 20 33 3°57'5.71"N 76°49'10.31"W 

Cotriguaçu Optech ALTM3100EA 2011 10-15 850 11 60 9°27'8.87"S 58°51'51.22"W 

La Selva Optech ALTM3100EA 2009 4 1500 20 70 10°25'37.97"N 84°1'8.76"W 

Manaus Optech ALTM3100EA 2012 10-15 850 (max) 11 60 2°56'38.48"S 59°56'12.57"W 

Nouragues Riegl  LMS-Q560 2012 12 400 45 200 4°3'10.0"N 52°42'19.95"W 

Paracou Riegl  LMS-280i 2009 4 120-220 30 24 5°15'47.73"N 52°56'26.96"W 

Tapajós Optech ALTM3100EA 2011 10-15 850 (max) 11 60 2°50'53.41"S 54°57'44.53"W 
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Table 3. Coefficients, R2, RMSE and bias for the models used to estimate AGBLCA without and with wood density 777 
as a weighting factor (m_LCA) and m_LCA_wd, respectively). 778 

Model Equation a b R2 RMSE Bias R2  
cross-val 

RMSE 
cross-val 

Bias  
cross-val 

m_LCA AGB = aLCA + b  
(Eq. (2)) 

 

3.56 136.91 0.59 62.53 0.0 0.58 63.26 0.16 

m_LCA_wd AGB = (aLCA+b) × WD 
(Eq. (3)) 

4.47 270.27 0.78 46.02 -0.76 0.77 46.47 -0.63 
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 781 

Figure 1. Segmentation of the 1 km × 1 km images in each site using five canopy height thresholds. A minimum of 782 
100 contiguous pixels was used as a segmentation threshold in all cases. 783 
 784 
Figure 2 : LCA in function of height thresholds in the nine study sites. The steepest slopes are between 24 m 785 
(Antimary) and 30 m (Nouragues), with an average of 27 m across sites. Steepness of slope was obtained by 786 
calculating the derivative of the sigmoid models charactering each site. 787 
 788 
Figure 3. Distribution of R2 between tree height thresholds used to determine LCA and AGBLidar in the nine 1 ha 789 
subareas (a) and distribution of R2 between tree height thresholds and AGBinv in 1 ha inventory plots of the four 790 
calibration sites (b). All optimal thresholds are between 23 m and 30 m. The average maximal height threshold is 27 791 
m.  792 
 793 
Figure 4. Relationship between AGBinv density and LCA (a) and AGB density normalized by averaged wood (b). 794 
Normalizing AGB by averaged wood density brings the data from different sites closer to a common fit. 795 
 796 
Figure 5. AGBinv density vs. AGBLCA estimated with LCA_wd model (a). AGBLidar density from the 1km2 images 797 
vs. AGBLCA estimated with LCA_wd model (b). The black line represents the 1-to-1 line.  798 
 799 
Figure 6. Detection of changes of forest structure from selective logging in the Antimary study area showing a) the 800 
difference between pre- and post- logging (2010–2011) Lidar derived LCA at 1 ha grid cells over the entire study 801 
area, b) the histogram of LCA for the two Lidar datasets showing the mean difference and the reduction of medium 802 
and large LCA areas from selective logging, c) 2010 Lidar LCA segmentation at 1 m resolution over a sample area 803 
in the north of the study site, d) same LCA segmentation for 2011 Lidar data, and e) difference of the two segmented 804 
areas showing the extent of the logging impact on large trees in addition to natural changes of forest structure from 805 
changes in canopy gaps from tree falls and tree growth. 806 
 807 
Figure 7. Relationship between LCA and AGBLCA (a) and relationship between AGBinv of large trees (>50 cm 808 
DBH) and total AGBinv (b). In both cases, the intercepts represent the contribution of small trees to total AGB. Note 809 
that Manaus and Nouragues overlap because they have the same mean wood density, as well as Chocó and 810 
Cotriguaçu. 811 
 812 
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Figure 1 815 

 816 

  817 

!An$mary!!!!!!BCI! !!!!!!Choco!!!!!!La!Selva!!!!!Manaus!!Nouragues!!Paracou!!!Tapajos!!Cotriguaçu!

20m!

25m!

30m!

35m!

40m!

0! 1km! Canopy!Height!!>!threshold!,!minimum!100!con$guous!pixels!1	km

20	m

40	m

35	m

25	m
20	m

30	m

Biogeosciences Discuss., https://doi.org/10.5194/bg-2017-547
Manuscript under review for journal Biogeosciences
Discussion started: 5 January 2018
c© Author(s) 2018. CC BY 4.0 License.



 33 

Figure 2 818 
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Figure 3 821 
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Figure 4 824 

 825 

  826 

(a) (b)

0 20 40 60 80 100

20
0

40
0

60
0

80
0

10
00

LCA (%)

A
G
B
in
v /

 W
D

BCI
La Selva
Nouragues
Paracou

0 20 40 60 80 100

10
0

20
0

30
0

40
0

50
0

60
0

LCA (%)

A
G
B
in
v (

M
g 

ha
-1
)

BCI
La Selva
Nouragues
Paracou
All sites

Biogeosciences Discuss., https://doi.org/10.5194/bg-2017-547
Manuscript under review for journal Biogeosciences
Discussion started: 5 January 2018
c© Author(s) 2018. CC BY 4.0 License.



 36 

Figure 5 827 
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Figure 6 831 

 832 

  833 

-1 28

Disturbed
Recovered

(a)

(b)

(c)

(d)

(e)

LCA

Fr
eq
ue
nc
y

0 20 40 60 80

0
20

40
60

80

LCA2010 (mean	=	34.8)

LCA2012 (mean	=	29.2)

Overlap

LCA	(2010)

LCA	(2012)

∆	LCA	(2010	- 2012)

∆	LCA

Biogeosciences Discuss., https://doi.org/10.5194/bg-2017-547
Manuscript under review for journal Biogeosciences
Discussion started: 5 January 2018
c© Author(s) 2018. CC BY 4.0 License.



 38 

Figure 7 834 
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